Optimizing Back-Propagation using PSO_Hill_A* and Genetic Algorithm
نویسندگان
چکیده
Back propagation(BP) is used to solve real world problems which use the concept of multilayer perceptron(MLP). BP have the disadvantage of trapped in local minima, slow convergence rate and more error prone. To optimize BP Algorithm, Particle swarm optimization(PSO) and Genetic algorithm(GA) is used. Limitation of PSO_Hill and PSO_A* is overcomes when these algorithms are combined and on the basis of strength of these two algorithm we proposed a new PSO_Hill_A* algorithm which is used to optimize and enhance learning process in terms of convergence rate and accuracy. GA is a kind of method to simulate and to search the optimal solution, GA can have four operations including Encoding, selecting, crossover and Mutation. To optimize and improve BP, we proposed two architecture: 1) Use of PSO_Hill_A* before and after hidden layer. 2) Use of GA before and after hidden layer.
منابع مشابه
Estimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کاملEstimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کاملPredicting air pollution in Tehran: Genetic algorithm and back propagation neural network
Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the...
متن کاملModeling of measurement error in refractive index determination of fuel cell using neural network and genetic algorithm
Abstract: In this paper, a method for determination of refractive index in membrane of fuel cell on basis of three-longitudinal-mode laser heterodyne interferometer is presented. The optical path difference between the target and reference paths is fixed and phase shift is then calculated in terms of refractive index shift. The measurement accuracy of this system is limited by nonlinearity erro...
متن کاملOptimizing the Prediction Model of Stock Price in Pharmaceutical Companies Using Multiple Objective Particle Swarm Optimization Algorithm (MOPSO)
The purpose of this study is to optimize the stock price forecasting model with meta-innovation method in pharmaceutical companies.In this research, stock portfolio optimization has been done in two separate phases.The first phase is related to forecasting stock futures based on past stock information, which is forecasting the stock price using artificial neural network.The neural network used ...
متن کامل